3 resultados para Direct sequencing

em Deakin Research Online - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Direct sequencing of mitochondrial DNA (mtDNA) D-loop (745 bp) and MTATPase6/MTATPase8 (857 bp) regions was used to investigate genetic variation within common carp and develop a global genealogy of common carp strains. The D-loop region was more variable than the MTATPase6/MTATPase8 region, but given the wide distribution of carp the overall levels of sequence divergence were low. Levels of haplotype diversity varied widely among countries with Chinese, Indonesian and Vietnamese carp showing the greatest diversity whereas Japanese Koi and European carp had undetectable nucleotide variation. A genealogical analysis supports a close relationship between Vietnamese, Koi and Chinese Color carp strains and to a lesser extent, European carp. Chinese and Indonesian carp strains were the most divergent, and their relationships do not support the evolution of independent Asian and European lineages and current taxonomic treatments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tor tambroides and T. douronensis, locally referred to as empurau and semah, respectively, are high valued mahseer species, indigenous to Sarawak, East Malaysia, with an aquaculture potential and of conservational value. Direct sequencing of mitochondrial DNA (mtDNA) 16S rRNA gene region (542 bp) was used to investigate genetic variation of T. tambroides and T. douronensis broodstock collected from different geographic locations in Sarawak and maintained at the Indigenous Fish Research and Production Center (IFRPC), Tarat, Sarawak, Malaysia. A total of 11 unique haplotypes were identified, of which six were detected in T. tambroides, and five in T. douronensis. Overall, nucleotide diversity (π) was low, ranging from 0.000 to 0.006, and haplotype diversity (h) ranged from 0.000 to 0.599. Although the analysis failed to detect genetic variation amongst populations of T. tambroides (significant pairwise FST was found for only one test, but pairwise haplotype frequencies were not statistically significant), substantial inter-population divergence among T. douronensis was recognised, especially those originating from different river systems (pairwise FST = 0.754 to 1.000, P < 0.05). Fixed haplotype differences were found in one population of T. douronensis. Average nucleotide divergence between T. tambroides and T. douronensis was 0.018, similar to the amount recognised between T. tambroides and the outgroup T. khudree (0.017). In addition, phylogenetic analysis revealed that the T. douronensis mtDNA consisted of two highly divergent clusters (0.020), one of which is more closely related to T. tambroides rather than with the other group of haplotypes of the conspecifics. The findings from the present study have important implications for aquaculture, management and conservation of these two species. The data also raise some concerns regarding the taxonomic status of T. douronensis, which needs to be addressed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The human immunodeficiency virus type 1 genomic RNA primer-binding site (PBS) sequence comprises 18 nucleotides which are complementary to those at the 3' end of the replication initiation primer tRNA(3Lys). To investigate the role of the PBS in viral replication, we either deleted the original wild-type PBS (complementary to tRNA(3Lys) or replaced it with DNA sequences complementary to either tRNA(1,2Lys) or tRNA(Phe). Transfection of COS cells with such molecular constructs yielded similar levels of viral progeny that were indistinguishable with regard to viral proteins and tRNA content. Virus particles derived from PBS-deleted molecular clones were noninfectious for MT-4, Jurkat, and CEM-T4 cells. However, infectious viruses were derived from constructs in which the PBS had been altered to sequences complementary to either tRNA(1,2Lys) or tRNA(Phe), although mutated forms showed significant lags in replication efficiency in comparison with wild types. Molecular analysis of reverse-transcribed DNA in cells infected by the mutated viruses indicated that both tRNA(1,2Lys) and tRNA(Phe) could function as primers for reverse transcription during the early stages of infection. Sequencing of full-length proviral DNA, obtained 6 days after infection, revealed the mutated PBS, indicating that a complete cycle of reverse transcription had occurred. During subsequent rounds of infection, reversion of the mutated PBS to wild-type sequences was observed, accompanied by increased production of viral gene products. Reversion to wild-type PBS sequences was confirmed both by specific PCR analysis, using distinct primer pairs, and by direct sequencing of amplified segments. We also performed endogenous in vitro reverse transcription experiments in which synthesis of minus-strand strong-stop viral DNA was primed from a synthetic RNA template containing a PBS complementary to various tRNA isoacceptors. These results showed that tRNA(3Lys) was a much more efficient primer of such reactions than either tRNA(1,2Lys) or tRNA(Phe).